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Overview Low Power Design Lecture

● Introduction and Energy/Power Sources (1)

● Energy/Power Sources(2): Solar Energy Harvesting

● Battery Modeling – Part 1

● Battery Modeling – Part 2

● Hardware power optimization and estimation – Part 1

● Hardware power optimization and estimation – Part 2

● Hardware power optimization and estimation – Part 3

● Low Power Software and Compiler

● Thermal Management – Part 1

● Thermal Management – Part 2

● Aging Mechanisms in integrated circuits

● Lab Meeting
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Overview for today

● Recap: Clock Gating

● Power Gating

● Pre-Computation

● Reducing Power by Scheduling

● Operand Isolation

● Register Sharing

● Reducing Power through the Controller
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Recap: Clock gating

What is clock gating?

How can clock gating result in power savings?
Reduced capacitive switching in the clock network like

- clock buffers

- interconnect of the clock network

 - latches/registers that are fed by the clock signal
Also:

 - may prevent storage elements from loading unnecessary new values and 
thus saving power

Idea: suppress or disable transitions from propagating
to parts of the clock network under specific conditions
that are determined by the clock gating circuitry

(Src: [Anand98])
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Recap: Clock gating (cont’d)

Register re-loads 
previous value when 
comparator output is 
‘0’ => transition at 
the clock input to 
register can be 
suppressed and 
transitions can be 
spared 

 Scheme 1: register 
clock input would be 
forced to ‘0’ when 
comp is ‘0’ (desired)

 Scheme 2: register 
clock input is forced to 
‘1’ when comparator 

output evaluates to ‘0’ 
(desired)

Scheme 1: does not work 
since comp output is not 
stable before clock edge 
rises

Scheme 2: OK (as long as 
gating condition stabilizes 
before clock does ’0’ -> ‘1’)
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Power Gating
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Power Gating

● Power Gating: 

– Bring both Vdd and ground to the same voltage potential when circuit idle

● Power savings:

– Reduced potential greatly minimizes leakage currents

● Disadvantages:

– slower than clock gating

– circuit state lost (remedy: retention registers)
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Power gating (cont.)

(src: [Keating])

 Possible power saving is higher 
for power gating than clock 
gating

 Power gating requires time to 
drain/load capacitances of gated 
circuit!

Clock gating Power gating (ideal)

Power gating (more realistic)
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Power Gating (cont'd)

Header: V
dd

 is 
pulled to Gnd

Footer: Gnd is 
pulled to V

dd

Coarse grained

Gating transistors are
High Vth to limit
leakage in gated 
mode
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Power Gating (cont'd)

● Highest time requirement is loading circuit capacitance

– Footer: most delay is at start of power gating (“switching off”)

– Header: most delay is at end of power gating (“turning on”)

● Trade-off between sleep transistor size and speed of 
gating

– Larger transistors can load/drain capacitances much quicker

– (but also consume more leakage themselves!)

● Dynamic power is consumed when turning on/off power 
gating

– If power gated interval too low may result in increase in power 
consumption

– Break-even time can be determined.



ces.itec.kit.edu13Volker Wenzel

Power savings through Pre-Computation
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Power savings through pre-computation

Basic idea:
Pre-compute (i.e. predict) output of a 
circuit one cycle ahead with additional 
logic and then  switch off original logic

What is the rationale?
For a majority of input values, the output 
might be computed with very simple 
logic but in order to cover all input, 
complex logic is necessary

original circuit

Circuit with pre-computation logic

Assumptions: ‘A’ represents combinational logic; has 
one output
Architecture:
introduce new functions
g1, g2 as follows

Tasks of g1, g2: a) pre-compute, b) switch off original circuit in certain cases when 
prediction is possible
Note: a) g1, g2 only cover a subset of all x1,…,xn (desirable: a large coverage) b) 
imposes overhead in form of power area and probably performance 

(Src: [Devadas])

g1=1⇒ f=1
g2=1⇒ f=0
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Power savings through pre-computation

● Example: a comparator of two n-bit values C and D that results in ‘1’ if C > D
In that case, g1 can be defined 
to test the MSB:
Accordingly, g1 is defined as:
If g1=1 => C>D; g2=1 => D>C
So, XNOR needs to be 
computed for the pre-
computation logic Note: assuming a uniform 

probability for the inputs, the 
probability that XNOR results 
to ‘1’ is 50% !
If the bit MSB-1 is also 
tested, the probability is 75%!

=> With little effort the circuit 
can be predicted and power 
can be saved by switching off 
(gating) the original circuit

For large n, the power 
dissipation of that additional 
XNOR gate can be 
neglected

(Src: [Devadas])



ces.itec.kit.edu16Volker Wenzel

Managing Power through Scheduling
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Managing power through scheduling

● Recall: “pre-computation” is a shut-off technique based on clock cycle 
basis and is limited to the given structure of the logic

● Can power be managed at a higher level?

● Observation: it is common for performance optimization to compute all 
outcomes of a conditional operation in parallel with the condition 
evaluation itself

     The appropriate result will be chosen and the other one(s) will be discarded

● => this is ineffective in terms of power consumption

● Idea: power effective: enforce control dependencies between  operations 
in CDFG and conditional operation such that they depend during 
scheduling

     May be accomplished by meeting performance constraints first and then 
optimize power consumption
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Managing power through scheduling (cont’d)

Example: expression |a-b|
Assumption: each op ‘-’ and ‘>’
Takes one clock cycle and ‘sel’ 
operation may be chained with any 
other operation
Constraint: a schedule within 2 cycles

→ Two possible schedules b) and c)

a) c)b)

Schedule b): ignores control dependencies;
a-b and b-a are executed independently of ‘>’;
There is a flexibility in scheduling ‘>’
Problem: from power point of view b) is 
inefficient: both a-b and b-a are always executed
Schedule c): a-b or b-a are activated exclusively 
due to outcome of ‘>’.
a-b, b-a may be assigned to same or to two 
different subtractors (latter case: one needs to be 
shut down)

(Src: [Anand98])
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Power savings through Operand Isolation
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Power savings through operand isolation

● Note: previous techniques 
(pre-computation, gated 
clocks) are only applicable 
to blocks of combinational 
logic that are fed by registers

● Here: applicability to circuit 
blocks that are embedded 
within combinational logic

● Idea here:
– Disable transitions at inputs 

of variables
– Insert transparent latches at 

all inputs of embedded 
block

– If block does not perform 
any useful operation: a) 
transparent latches at 
inputs are disabled, b) 
retain previous cycle’s 
values

● → avoids unnecessary 
power consumption (src: [Anand98])
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Power savings through operand isolation:
- guarded evaluation -

o – signal in a combinational circuit
F – logic that is computing o
I – set of inputs to F
ODC_o – observability don’t care set with respect 
to o, i.e. set of primary input assignments to the 
entire circuit such that the value of o has no 
influence on the values at the primary outputs
LE – an arbitrary value of the existing circuit such 
that LE  ODC⇒

o
, i.e. 

Thus, when LE = 1, the value on o is not needed 
to compute the primary outputs.                          

                                   earliest time at which any of the inputs in I can change its value
                                   when LE=1
                          
                                   the latest time at which LE can stabilize to logic value ‘1’

pure guarded evaluation

LE can be used to control guard logic. Transparent latches 
need to be disabled in time, i.e., early enough to cut off 
transitions on any of the inputs in I (and such save power)

(src: [Anand98])

(src: [Tivari])

LE+ODCo≡1

t l(LE)LE=1<t e (I)LE=1

t e (I )LE=1

t l(LE)LE=1
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Power savings through operand isolation:
- relaxed guarded evaluation (cont’d) -

Idea: use guarded evaluation, but: use a relaxed condition such that it becomes 
easier to find the shut-off condition (remember: signal LE must be available 
anywhere in the existing circuit):

Timing condition: same as before 
at “pure guarded evaluation”

Two cases for LE=1 (note: for 
LE=0 circuit is functioning 
correctly anyway)

1. o is not needed to compute 
primary outputs (OK)

2. o is needed to compute 
primary output. Circuit may 
operate incorrectly. An ‘OR’ 
gate is needed (see figure)

(src: [Anand98], [Tivari])

LE⇒(o+ODCo)⇔LE+o+ODCo≡1



ces.itec.kit.edu23Volker Wenzel

Power savings through operand isolation:
- guarded evaluation -

Comparing: pre-computation and guarded evaluation

● Pre-computation needs additional circuitry; Guarded Evaluation is derived 
from within the circuit

● Pre-computation may require re-synthesis to efficiently derive additional 
circuits whereas Guarded Evaluation leaves circuit as is (especially 
important in hand-optimized circuitry)
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Power savings through operand isolation:
- application to high-level synthesis -

● Idea: apply operand isolation from logic level to high-level synthesis

● In fact: the conditions under which a resource (e.g. a functional unit FU) is 
not used are readily available from the scheduling and resource sharing!

● => idle cycles can be derived from the circuits (see next slide)

(src: [Anand98])

Scheduled example
DFG
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Power savings through operand isolation:
- application to high-level synthesis -

(src: [Anand98])
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● Idle cycles of FUs

– MUL1, MUL2: s4

– ADD1 : s2, s3

– SUB1 : s1,s2

– CMP1 : s1, s3, s4

● Insert transparent latches at the FU's 
input to perform operand isolation

– LE1 = LE3 = x4

– LE3 = x1 + x2

– LE4 = x2 + x3

Q: Why no latches at the inputs of 
CMP1?

A: Input values do not change in idle 
cycles

Power savings through operand isolation:
- application to high-level synthesis (cont’d)

(src: [Anand98])
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Power savings through operand isolation:
- application to high-level synthesis (cont’d) -

Possible disadvantages:

The isolation technique attempts to eliminate spurious activity 
at the inputs of embedded resources (e.g. functional units) by 
inserting transparent latches into the RTL implementation.

●  incurring power and area overheads due to the addition of 
extra circuitry

●  operand isolation also requires some delay constraints 
(the disabling transition at the    transparent latch enable 
input should arrive before its data input can change).

● Satisfaction of the delay constraints may require the 
addition of extra circuit delay in the critical path, which 
may not be acceptable for high-performance designs.
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Power savings through constrainted register sharing
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Power savings through constrained register sharing

● Idea: rather than applying transparent latches to an already scheduled 
DFG, can’t the scheduling, mapping etc already take into 
consideration power shut-down techniques?

● Impact of variable assignment on power consumption:
– two candidate assignments, Assignment 1 and Assignment 2, shown in 

Table (next slide).
– Architectures obtained using these assignments were subject to:

● logic synthesis optimizations, and placed and routed using a cell 
library. 

● The transistor-level netlists extracted from the layouts were simulated 
using a switch-level simulator with typical input traces to measure 
power.

– For the circuit Design 1, synthesized from Assignment 1, the power 
consumption was 30.71mW, and for the circuit Design 2, synthesized from 
Assignment 2, the power consumption was 18.96mW !
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Power savings through constrained register sharing 
(cont’d)

Example: DFG and two possible register assignments that differ significantly 
in power consumption
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Power savings through constrained
register sharing (cont’d)

Two distinct schedules: Shown: FU (in box), input variables left and right of operation, grey-
shaded: variables at input of respective operation change value; spurious input transitions i.e. 
those that do not correspond to an DFG operations are marked with an ‘X’.

Observation:
A functional unit that does not 
alter its input does not perform a 
spurious operation

Conclusion:
Constrained register sharing can 

save significant energy/power:
Upper case: 7 operations that do not 

correspond to a DFG operation
Lower case: only one such operation
Note:
a) Number of control steps is not 

increased
b) Number of HW resources (FUs) 

is still the same 
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Power savings through dynamic
variable rebinding

Problem in previous example:
-There is still a spurious operation is control step s1 of 
each operation:
-MUX selects R5 (to which v12 is assigned) from control 
step s3 of each iteration to control step s1 of the next 
iteration
- v12 acquires a new value at step s1

Idea::
Combine dynamic variable rebinding with variable 
assignment to completely eliminate spurious operation

How::
-Need to preserve old (previous iteration) value of v12 at 
input of SUB1 until new value of v3 in current iteration is 
generated
- then, spurious operation can be eliminated
- swapping the variables assigned to registers R5 and R6 
in alternate iterations
- result: see figure on the right

(src: [Anand98])
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Managing power through the controller

● Main idea:

– Find way to reduce power without having to spend large overhead in 
terms of hardware (like transparent latches, etc.)

● Rather: Re-design existing control logic in order to 
reconfigure the multiplexer networks and functional units 
in the data path

● Might not completely eliminate activity but is low-cost 

●  best suited to control flow intensive designs:
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Managing power through the controller

(src: [Anand98])
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Managing power through the
controller (cont’d)

● Example: X.25 protocol

(src: [Anand98])
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Managing power through the
controller: X.25 example 1

Shown:
- left: a part of the data path
- middle/right: a) logic 
expression for control signals 
(x

i
=1 => controller is in state s

i
); 

b) activity graphs of ALU (state 
transitions with actions 
involved; ex: sel(0) sel(1), 
sel(2), SelectFunc(0) are 1, 0, 
1, 0, respectively => “bytes-
byteCount” is performed 

Observation:
- some states are actually idle 
states (gray shaded). This can 
be found out through 
scheduling info from HL 
synthesis.   Idea:

- re-specify idle states such that switching is minimized.
- Example: state transition s6->s4 : same signals are on muxes 
such that same operands stay stable. Since they do not change 
=> no switching => no unnecessary power consumption

Conclusion: re-specifying 
control signals can lead to 
power savings (without 
changing anything else)

(src: [Anand98])
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Managing power through the
controller: X.25 example 2

Shown:
- Different part of the X.25 designs: 
register that stores variable I and muxes 
that feed it through signals sel(18), M(18), 
sel(19)
- Same convention as before apply (gray 
shaded states are inactive states as far 
as that respective part of the design is 
concerned)

Idea:
- Can reduced activity in the mux tree 
lead to reduced power consumption?

Idea:
- Consider s7->s1: “count+byteCount” -> 
“bytes-byteCount). Since operation 
changes, also operand c28 changes (c28 
is output of ALU and feed the mux tree)

Solution:
- re-specifying the signals prevents from 
propagating this variable into the shown 
mux tree (see right state diagram)
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Managing power through the
controller (cont’d)

● Re-labeling activity graphs:

How to label an idle vertex in an activity graph?

● Different incoming and outgoing transitions into the 
idle state have different execution probabilities

● The values of data operands fed to the mux trees 
may themselves change => Only selecting the same 
operand does not ensure that switching activity is 
minimized
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Managing power through the
controller: formalizing the problem

Shown:
- A part of a data path and a part 
of the activity graph for the “<“ 
operator
- s3 is an idle state
- shown are all incoming and 
outgoing arcs to/from s3

Goal:
- using s3 for one of the labels 
L1, L2, L3 such that activity at 
the input of the “<“ is minimized

Some conventions:
- P(si - > sj)  - probability of the controller state transition from si to sj
- AM si->sj  -  activity matrix stores the cost of (average bit transitions for respective state transition).    
            Has only entry in row/column if the respective transition is actually in the state transition 
graph 
- Nodes in the state transition graph are to be re-labeled while minimizing labeling costs:

Goal: find an L* such that cost function is minimized => best re-labeling
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Conclusion: Hardware power

● HW power sources:
– Data path
– Control path
– Clock tree

● Optimization strategies:
– Operator scheduling for low power
– Hardware power management (clock gating)
– Re-labeling of controller

● Very often there is a tradeoff
– reduced power may lead to: 

● more logic

● more complex design

● reduced performance

● …
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