
CES – Chair for Embedded Systems

ces.itec.kit.edu

Low Power Design

Volker Wenzel on behalf of Prof. Dr. Jörg Henkel
Summer Term 2016

ces.itec.kit.edu2Volker Wenzel

Lecture Slides

ces.itec.kit.edu3Volker Wenzel

Overview Low Power Design Lecture

● Introduction and Energy/Power Sources (1)

● Energy/Power Sources(2): Solar Energy Harvesting

● Battery Modeling – Part 1

● Battery Modeling – Part 2

● Hardware power optimization and estimation – Part 1

● Hardware power optimization and estimation – Part 2

● Hardware power optimization and estimation – Part 3

● Low Power Software and Compiler

● Thermal Management – Part 1

● Thermal Management – Part 2

● Aging Mechanisms in integrated circuits

● Lab Meeting

ces.itec.kit.edu4Volker Wenzel

Overview for today

● Recap: Clock Gating

● Power Gating

● Pre-Computation

● Reducing Power by Scheduling

● Operand Isolation

● Register Sharing

● Reducing Power through the Controller

ces.itec.kit.edu5Volker Wenzel

Recap: Clock gating

What is clock gating?

How can clock gating result in power savings?
Reduced capacitive switching in the clock network like

- clock buffers

- interconnect of the clock network

 - latches/registers that are fed by the clock signal
Also:

 - may prevent storage elements from loading unnecessary new values and
thus saving power

Idea: suppress or disable transitions from propagating
to parts of the clock network under specific conditions
that are determined by the clock gating circuitry

(Src: [Anand98])

ces.itec.kit.edu6Volker Wenzel

Recap: Clock gating (cont’d)

Register re-loads
previous value when
comparator output is
‘0’ => transition at
the clock input to
register can be
suppressed and
transitions can be
spared

 Scheme 1: register
clock input would be
forced to ‘0’ when
comp is ‘0’ (desired)

 Scheme 2: register
clock input is forced to
‘1’ when comparator

output evaluates to ‘0’
(desired)

Scheme 1: does not work
since comp output is not
stable before clock edge
rises

Scheme 2: OK (as long as
gating condition stabilizes
before clock does ’0’ -> ‘1’)

? (s
rc

:
[A

na
nd

98
])

ces.itec.kit.edu7Volker Wenzel

Power Gating

ces.itec.kit.edu8Volker Wenzel

Power Gating

● Power Gating:

– Bring both Vdd and ground to the same voltage potential when circuit idle

● Power savings:

– Reduced potential greatly minimizes leakage currents

● Disadvantages:

– slower than clock gating

– circuit state lost (remedy: retention registers)

ces.itec.kit.edu9Volker Wenzel

Power gating (cont.)

(src: [Keating])

 Possible power saving is higher
for power gating than clock
gating

 Power gating requires time to
drain/load capacitances of gated
circuit!

Clock gating Power gating (ideal)

Power gating (more realistic)

ces.itec.kit.edu11Volker Wenzel

Power Gating (cont'd)

Header: V
dd

 is
pulled to Gnd

Footer: Gnd is
pulled to V

dd

Coarse grained

Gating transistors are
High Vth to limit
leakage in gated
mode

ces.itec.kit.edu12Volker Wenzel

Power Gating (cont'd)

● Highest time requirement is loading circuit capacitance

– Footer: most delay is at start of power gating (“switching off”)

– Header: most delay is at end of power gating (“turning on”)

● Trade-off between sleep transistor size and speed of
gating

– Larger transistors can load/drain capacitances much quicker

– (but also consume more leakage themselves!)

● Dynamic power is consumed when turning on/off power
gating

– If power gated interval too low may result in increase in power
consumption

– Break-even time can be determined.

ces.itec.kit.edu13Volker Wenzel

Power savings through Pre-Computation

ces.itec.kit.edu14Volker Wenzel

Power savings through pre-computation

Basic idea:
Pre-compute (i.e. predict) output of a
circuit one cycle ahead with additional
logic and then switch off original logic

What is the rationale?
For a majority of input values, the output
might be computed with very simple
logic but in order to cover all input,
complex logic is necessary

original circuit

Circuit with pre-computation logic

Assumptions: ‘A’ represents combinational logic; has
one output
Architecture:
introduce new functions
g1, g2 as follows

Tasks of g1, g2: a) pre-compute, b) switch off original circuit in certain cases when
prediction is possible
Note: a) g1, g2 only cover a subset of all x1,…,xn (desirable: a large coverage) b)
imposes overhead in form of power area and probably performance

(Src: [Devadas])

g1=1⇒ f=1
g2=1⇒ f=0

ces.itec.kit.edu15Volker Wenzel

Power savings through pre-computation

● Example: a comparator of two n-bit values C and D that results in ‘1’ if C > D
In that case, g1 can be defined
to test the MSB:
Accordingly, g1 is defined as:
If g1=1 => C>D; g2=1 => D>C
So, XNOR needs to be
computed for the pre-
computation logic Note: assuming a uniform

probability for the inputs, the
probability that XNOR results
to ‘1’ is 50% !
If the bit MSB-1 is also
tested, the probability is 75%!

=> With little effort the circuit
can be predicted and power
can be saved by switching off
(gating) the original circuit

For large n, the power
dissipation of that additional
XNOR gate can be
neglected

(Src: [Devadas])

ces.itec.kit.edu16Volker Wenzel

Managing Power through Scheduling

ces.itec.kit.edu17Volker Wenzel

Managing power through scheduling

● Recall: “pre-computation” is a shut-off technique based on clock cycle
basis and is limited to the given structure of the logic

● Can power be managed at a higher level?

● Observation: it is common for performance optimization to compute all
outcomes of a conditional operation in parallel with the condition
evaluation itself

 The appropriate result will be chosen and the other one(s) will be discarded

● => this is ineffective in terms of power consumption

● Idea: power effective: enforce control dependencies between operations
in CDFG and conditional operation such that they depend during
scheduling

 May be accomplished by meeting performance constraints first and then
optimize power consumption

ces.itec.kit.edu18Volker Wenzel

Managing power through scheduling (cont’d)

Example: expression |a-b|
Assumption: each op ‘-’ and ‘>’
Takes one clock cycle and ‘sel’
operation may be chained with any
other operation
Constraint: a schedule within 2 cycles

→ Two possible schedules b) and c)

a) c)b)

Schedule b): ignores control dependencies;
a-b and b-a are executed independently of ‘>’;
There is a flexibility in scheduling ‘>’
Problem: from power point of view b) is
inefficient: both a-b and b-a are always executed
Schedule c): a-b or b-a are activated exclusively
due to outcome of ‘>’.
a-b, b-a may be assigned to same or to two
different subtractors (latter case: one needs to be
shut down)

(Src: [Anand98])

ces.itec.kit.edu19Volker Wenzel

Power savings through Operand Isolation

ces.itec.kit.edu20Volker Wenzel

Power savings through operand isolation

● Note: previous techniques
(pre-computation, gated
clocks) are only applicable
to blocks of combinational
logic that are fed by registers

● Here: applicability to circuit
blocks that are embedded
within combinational logic

● Idea here:
– Disable transitions at inputs

of variables
– Insert transparent latches at

all inputs of embedded
block

– If block does not perform
any useful operation: a)
transparent latches at
inputs are disabled, b)
retain previous cycle’s
values

● → avoids unnecessary
power consumption (src: [Anand98])

ces.itec.kit.edu21Volker Wenzel

Power savings through operand isolation:
- guarded evaluation -

o – signal in a combinational circuit
F – logic that is computing o
I – set of inputs to F
ODC_o – observability don’t care set with respect
to o, i.e. set of primary input assignments to the
entire circuit such that the value of o has no
influence on the values at the primary outputs
LE – an arbitrary value of the existing circuit such
that LE ODC⇒

o
, i.e.

Thus, when LE = 1, the value on o is not needed
to compute the primary outputs.

 earliest time at which any of the inputs in I can change its value
 when LE=1

 the latest time at which LE can stabilize to logic value ‘1’

pure guarded evaluation

LE can be used to control guard logic. Transparent latches
need to be disabled in time, i.e., early enough to cut off
transitions on any of the inputs in I (and such save power)

(src: [Anand98])

(src: [Tivari])

LE+ODCo≡1

t l(LE)LE=1<t e (I)LE=1

t e (I)LE=1

t l(LE)LE=1

ces.itec.kit.edu22Volker Wenzel

Power savings through operand isolation:
- relaxed guarded evaluation (cont’d) -

Idea: use guarded evaluation, but: use a relaxed condition such that it becomes
easier to find the shut-off condition (remember: signal LE must be available
anywhere in the existing circuit):

Timing condition: same as before
at “pure guarded evaluation”

Two cases for LE=1 (note: for
LE=0 circuit is functioning
correctly anyway)

1. o is not needed to compute
primary outputs (OK)

2. o is needed to compute
primary output. Circuit may
operate incorrectly. An ‘OR’
gate is needed (see figure)

(src: [Anand98], [Tivari])

LE⇒(o+ODCo)⇔LE+o+ODCo≡1

ces.itec.kit.edu23Volker Wenzel

Power savings through operand isolation:
- guarded evaluation -

Comparing: pre-computation and guarded evaluation

● Pre-computation needs additional circuitry; Guarded Evaluation is derived
from within the circuit

● Pre-computation may require re-synthesis to efficiently derive additional
circuits whereas Guarded Evaluation leaves circuit as is (especially
important in hand-optimized circuitry)

ces.itec.kit.edu24Volker Wenzel

Power savings through operand isolation:
- application to high-level synthesis -

● Idea: apply operand isolation from logic level to high-level synthesis

● In fact: the conditions under which a resource (e.g. a functional unit FU) is
not used are readily available from the scheduling and resource sharing!

● => idle cycles can be derived from the circuits (see next slide)

(src: [Anand98])

Scheduled example
DFG

ces.itec.kit.edu25Volker Wenzel

Power savings through operand isolation:
- application to high-level synthesis -

(src: [Anand98])

ces.itec.kit.edu26Volker Wenzel

● Idle cycles of FUs

– MUL1, MUL2: s4

– ADD1 : s2, s3

– SUB1 : s1,s2

– CMP1 : s1, s3, s4

● Insert transparent latches at the FU's
input to perform operand isolation

– LE1 = LE3 = x4

– LE3 = x1 + x2

– LE4 = x2 + x3

Q: Why no latches at the inputs of
CMP1?

A: Input values do not change in idle
cycles

Power savings through operand isolation:
- application to high-level synthesis (cont’d)

(src: [Anand98])

ces.itec.kit.edu27Volker Wenzel

Power savings through operand isolation:
- application to high-level synthesis (cont’d) -

Possible disadvantages:

The isolation technique attempts to eliminate spurious activity
at the inputs of embedded resources (e.g. functional units) by
inserting transparent latches into the RTL implementation.

● incurring power and area overheads due to the addition of
extra circuitry

● operand isolation also requires some delay constraints
(the disabling transition at the transparent latch enable
input should arrive before its data input can change).

● Satisfaction of the delay constraints may require the
addition of extra circuit delay in the critical path, which
may not be acceptable for high-performance designs.

ces.itec.kit.edu28Volker Wenzel

Power savings through constrainted register sharing

ces.itec.kit.edu29Volker Wenzel

Power savings through constrained register sharing

● Idea: rather than applying transparent latches to an already scheduled
DFG, can’t the scheduling, mapping etc already take into
consideration power shut-down techniques?

● Impact of variable assignment on power consumption:
– two candidate assignments, Assignment 1 and Assignment 2, shown in

Table (next slide).
– Architectures obtained using these assignments were subject to:

● logic synthesis optimizations, and placed and routed using a cell
library.

● The transistor-level netlists extracted from the layouts were simulated
using a switch-level simulator with typical input traces to measure
power.

– For the circuit Design 1, synthesized from Assignment 1, the power
consumption was 30.71mW, and for the circuit Design 2, synthesized from
Assignment 2, the power consumption was 18.96mW !

ces.itec.kit.edu30Volker Wenzel

Power savings through constrained register sharing
(cont’d)

Example: DFG and two possible register assignments that differ significantly
in power consumption

ces.itec.kit.edu31Volker Wenzel

Power savings through constrained
register sharing (cont’d)

Two distinct schedules: Shown: FU (in box), input variables left and right of operation, grey-
shaded: variables at input of respective operation change value; spurious input transitions i.e.
those that do not correspond to an DFG operations are marked with an ‘X’.

Observation:
A functional unit that does not
alter its input does not perform a
spurious operation

Conclusion:
Constrained register sharing can

save significant energy/power:
Upper case: 7 operations that do not

correspond to a DFG operation
Lower case: only one such operation
Note:
a) Number of control steps is not

increased
b) Number of HW resources (FUs)

is still the same

ces.itec.kit.edu32Volker Wenzel

Power savings through dynamic
variable rebinding

Problem in previous example:
-There is still a spurious operation is control step s1 of
each operation:
-MUX selects R5 (to which v12 is assigned) from control
step s3 of each iteration to control step s1 of the next
iteration
- v12 acquires a new value at step s1

Idea::
Combine dynamic variable rebinding with variable
assignment to completely eliminate spurious operation

How::
-Need to preserve old (previous iteration) value of v12 at
input of SUB1 until new value of v3 in current iteration is
generated
- then, spurious operation can be eliminated
- swapping the variables assigned to registers R5 and R6
in alternate iterations
- result: see figure on the right

(src: [Anand98])

ces.itec.kit.edu33Volker Wenzel

Managing power through the controller

● Main idea:

– Find way to reduce power without having to spend large overhead in
terms of hardware (like transparent latches, etc.)

● Rather: Re-design existing control logic in order to
reconfigure the multiplexer networks and functional units
in the data path

● Might not completely eliminate activity but is low-cost

● best suited to control flow intensive designs:

ces.itec.kit.edu34Volker Wenzel

Managing power through the controller

(src: [Anand98])

ces.itec.kit.edu35Volker Wenzel

Managing power through the
controller (cont’d)

● Example: X.25 protocol

(src: [Anand98])

ces.itec.kit.edu36Volker Wenzel

Managing power through the
controller: X.25 example 1

Shown:
- left: a part of the data path
- middle/right: a) logic
expression for control signals
(x

i
=1 => controller is in state s

i
);

b) activity graphs of ALU (state
transitions with actions
involved; ex: sel(0) sel(1),
sel(2), SelectFunc(0) are 1, 0,
1, 0, respectively => “bytes-
byteCount” is performed

Observation:
- some states are actually idle
states (gray shaded). This can
be found out through
scheduling info from HL
synthesis. Idea:

- re-specify idle states such that switching is minimized.
- Example: state transition s6->s4 : same signals are on muxes
such that same operands stay stable. Since they do not change
=> no switching => no unnecessary power consumption

Conclusion: re-specifying
control signals can lead to
power savings (without
changing anything else)

(src: [Anand98])

ces.itec.kit.edu37Volker Wenzel

Managing power through the
controller: X.25 example 2

Shown:
- Different part of the X.25 designs:
register that stores variable I and muxes
that feed it through signals sel(18), M(18),
sel(19)
- Same convention as before apply (gray
shaded states are inactive states as far
as that respective part of the design is
concerned)

Idea:
- Can reduced activity in the mux tree
lead to reduced power consumption?

Idea:
- Consider s7->s1: “count+byteCount” ->
“bytes-byteCount). Since operation
changes, also operand c28 changes (c28
is output of ALU and feed the mux tree)

Solution:
- re-specifying the signals prevents from
propagating this variable into the shown
mux tree (see right state diagram)

ces.itec.kit.edu38Volker Wenzel

Managing power through the
controller (cont’d)

● Re-labeling activity graphs:

How to label an idle vertex in an activity graph?

● Different incoming and outgoing transitions into the
idle state have different execution probabilities

● The values of data operands fed to the mux trees
may themselves change => Only selecting the same
operand does not ensure that switching activity is
minimized

ces.itec.kit.edu39Volker Wenzel

Managing power through the
controller: formalizing the problem

Shown:
- A part of a data path and a part
of the activity graph for the “<“
operator
- s3 is an idle state
- shown are all incoming and
outgoing arcs to/from s3

Goal:
- using s3 for one of the labels
L1, L2, L3 such that activity at
the input of the “<“ is minimized

Some conventions:
- P(si - > sj) - probability of the controller state transition from si to sj
- AM si->sj - activity matrix stores the cost of (average bit transitions for respective state transition).
 Has only entry in row/column if the respective transition is actually in the state transition
graph
- Nodes in the state transition graph are to be re-labeled while minimizing labeling costs:

Goal: find an L* such that cost function is minimized => best re-labeling

ces.itec.kit.edu40Volker Wenzel

Conclusion: Hardware power

● HW power sources:
– Data path
– Control path
– Clock tree

● Optimization strategies:
– Operator scheduling for low power
– Hardware power management (clock gating)
– Re-labeling of controller

● Very often there is a tradeoff
– reduced power may lead to:

● more logic

● more complex design

● reduced performance

● …

ces.itec.kit.edu42Volker Wenzel

Sources

[Heer04] Ch. Herr, U. Schlichtmann, “Ultra-Low-Power Design: Device and logic design approaches”, pp. 1-20, in “Ultra Low-Power
Electronics and Design” by Kluwer, 2004.

[Anand98] A. Raghunathan, N.K. Jha, S. Dey, “High-level power analysis and optimization”, Kluwer Academic Publishers,1998.

[Sarraf95] S. Raje, M. Sarrafzadeh, “Variable voltage scheduling”, IEEE/ACM ISLPED 1995. pp. 9-14, 1995.

[Knight] R.S. Martin, J.P. Knight, “Power-Profiler: Optimizing ASIC’s Power Consumption at the behavioral level”, Proc. Of IEEE/ACM
Design Automation Conf. (DAC’95), pp.42-47,1995.

[Macii04] E. Macii (Ed.), “Ultra Low-Power Electronics and Design”, Kluwer Academic Publishers, 2004.

[Devadas] Alidina, M.; Monteiro, J.; Devadas, S.; Ghosh, A.; Papefthymiou, M.; “Precomputation-based Sequential Logic
Optimization For Low Power”, Computer-Aided Design (ICCAD), 1994., IEEE/ACM International Conference on November 6-10,
1994 Page(s):74 – 81.

[Ragh99] Raghunathan, A.; Dey, S.; Jha, N.K.; “Register transfer level power optimization with emphasis on glitch analysis and
reduction”, Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on Volume 18, Issue 8, Page(s):1114 –
1131, Aug. 1999.

[Tivari] Tiwari, V.; Malik, S.; Ashar, P.; “Guarded evaluation: pushing power management to logic synthesis/design”, Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on Volume 17, Issue 10, Page(s):1051 – 1060, Oct. 1998.

[Mehra] R. Mehra, J. Rabaey, “Exploiting Regularity for Low Power Design”, IEEE/ACM Intl’ Conference on Computer Aided Design
(ICCAD96), pp. 166-172, 1996.

[Keating] Keating, Michael, David Flynn, Rob Aitken, Alan Gibbons, and Kaijian Shi. Low power methodology manual: for system-on-
chip design. Springer Publishing Company, Incorporated, 2007.

[Kim] Kim, N.S.; Austin, T.; Baauw, D.; Mudge, T.; Flautner, K.; Hu, J.S.; Irwin, M.J.; Kandemir, M.; Narayanan, V., "Leakage current:
Moore's law meets static power," Computer , vol.36, no.12, pp.68,75, Dec. 2003

	Slide 1
	Slide 2
	Slide 3
	Outline
	Clock gating
	Clock gating (cont’d)
	Slide 7
	Slide 8
	Power gating (cont.)
	Slide 11
	Slide 12
	Slide 13
	Power savings through pre-computation
	Slide 15
	Slide 16
	Managing power through scheduling
	Managing power through scheduling (cont’d)
	Slide 19
	Power savings through operand isolation
	Power savings through operand isolation: - guarded evaluation -
	Power savings through operand isolation: - relaxed guarded evaluation (cont’d) -
	Slide 23
	Power savings through operand isolation: - application to high-level synthesis -
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Power savings through constrained register sharing
	Power savings through constrained register sharing (cont’d)
	Slide 31
	Power savings through dynamic variable rebinding
	Slide 33
	Slide 34
	Managing power through the controller (cont’d)
	Managing power through the controller: X.25 example 1
	Managing power through the controller: X.25 example 2
	Slide 38
	Managing power through the controller: formalizing the problem
	Conclusion: Hardware power
	Slide 42

